Oxygen is a prerequisite for successful wound healing due to the increased demand for reparative processes such as cell proliferation, bacterial defence, angiogenesis and collagen synthesis. Even though the role of oxygen in wound healing is not yet completely understood, many experimental and clinical observations have shown wound healing to be impaired under hypoxia. This article provides an overview on the role of oxygen in wound healing and chronic wound pathogenesis, a brief insight into systemic and topical oxygen treatment, and a discussion of the role of wound tissue oximetry. Thus, the aim is to improve the understanding of the role of oxygen in wound healing and to advance our management of wound patients.

An injury to the skin may disturb the integrity of the epidermis, the dermis, the connective tissue and the microcirculation, and thus inevitably results in a wound. The disturbed equilibrium of the local environment induces wound healing. Physiological wound healing is a well-regulated stepwise process that ends with wound closure within days or weeks, depending on diameter and depth of the wound. One critical parameter for wound healing is oxygen that is required for almost every step of the healing process. The oxygenation of wound tissue is dependent on both the oxygen supply to the wound tissue – that is determined by the pulmonic gas exchange, the blood haemoglobin level, the cardiac output, the peripheral perfusion rate, and by the capillary density in the wound tissue and its periphery – and on the oxygen consumption rate of parenchymal, stromal and inflammatory cells of which the wound tissue is composed. Interestingly, in literature dealing with wound tissue oxygenation, the unit mmHg for oxygen partial pressure (pO₂) is still widely used even though it is not the standard SI unit, which is pascal (1 Pa = 7.5006 × 10⁻³ mmHg). Therefore, we use mmHg throughout this review to make it easier for the reader to compare data from the different publications cited herein.

In wound healing, biochemical energy supply is a basic requirement. Oxygen is essential for the production of biological energy equivalents (e.g. adenosine triphosphate, ATP) in aerobic glycolysis, the citric acid cycle, and the oxidation of fatty acids. Therefore, sufficient oxygenation of tissue is a prerequisite for adequate energy levels, which are essential for proper cellular function.

In healing tissue, sufficient oxygenation is particularly relevant because of the increased energy demand for reparative processes such as cell proliferation, bacterial defence and collagen synthesis. The strictly oxygen-dependent NADPH-linked oxygenase represents a further highly important enzyme in wound healing; it catalyses the production of reactive oxygen species (ROS) such as peroxide anion (HO₂⁻), hydroxyl ion (HO⁻) and superoxide anion (O₂⁻). ROS play a prominent role in oxidative bacterial killing and coregulate prevalent processes in wound healing such as cytokine release, cell proliferation and angiogenesis.

Against this background, the crucial role of reduced oxygen supply in chronic wound pathogenesis becomes obvious. Chronic wounds are characterized by an insufficient repair process that precludes the establishment of a sustained anatomical and functional result in an appropriate length of time. Chronic wounds represent a frequent interdisciplinary disease affecting about 1% of the European population. According to the United Nations (see http://www.un.org/), the population of Europe was approximately 830 million in 2009, using a definition including the whole of the transcontinental countries of Russia and Turkey. Based on these figures, about 8 million people in Europe suffered from chronic wounds in 2009. Besides the tremendous impact on the quality of life of the affected patients, chronic wounds are...
Physiological wound healing

Physiological (syn. acute) wound healing is a dynamic step-wise process consisting of partially overlapping phases that are determined by interacting events on a molecular, cellular and extracellular matrix (ECM) level. This process, which is not yet fully understood, starts with a disturbance of tissue integrity and ends with a restitution ad integrum or a scar formation within an appropriate length of time. Nearly every step of wound healing requires oxygen. For didactic reasons, the course of physiological wound healing is schematically divided into three overlapping phases: the inflammatory phase, the proliferative phase (neoangiogenesis, tissue formation, re-epithelialization) and the tissue remodelling phase (Fig. 1).

Inflammatory phase

Physiologically, the inflammatory phase lasts between 4 and 6 days and starts immediately after wounding. Blood vessels constrict after traumatization, and platelets aggregate along the activated endothelium. Vascular disruption and vasoconstriction cause a hypoxic microenvironment that is intensified by increased oxygen consumption due to metabolically active cells contributing to wound healing. Hypoxia actuates the initial steps of wound healing by boosting ROS activity, by activating platelets and endothelium, and by inducing cytokines released from platelets, monocytes and parenchymal cells [e.g. vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β, tumour necrosis factor (TNF)]. However, even if acute hypoxia initiates wound healing, the recovery of wound tissue oxygenation is of major importance for physiological healing as chronic hypoxia impairs all processes necessary for healing. The aggregated platelets initiate the coagulation cascade leading to a blood clot, which prevents the leakage of blood and forms a provisional ECM. The provisional ECM, which is composed of fibronectin, fibrinogen, fibrin, thrombospondin and vitronectin, fills the tissue defect and enables migration of the different cytokines and cells required for the healing process. Besides these structural contributions, the activated platelets direct the healing process through the secretion of several mediators of wound healing such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), TGF-β1 and TGF-β2. ROS stimulate cytokine and chemokine release as well as their functions. The primary effect of these mediators is the recruitment and activation of neutrophils and macrophages to the wound site and the activation of fibroblasts. However, these platelet-derived processes are not the only ones that initiate healing. The injury activates epithelial and nonepithelial cells in the wound area. Consecutively, cytokines and chemokines are secreted, which initiate stress pathways and activate the complement cascade, both oxygen-dependent processes. In consequence, a set of secreted factors [TGF-α, TGF-β1, keratinocyte growth factor (KGF), EGF, PDGF and insulin-like growth factor (IGF)] is released, which attracts and stimulates relevant players of wound healing such as inflammatory leukocytes and fibroblasts. Just recently, it has been shown that hydrogen peroxide (H₂O₂) is an important mediator in wound–leucocyte interaction. A tail-fin model of a zebrafish with a genetically encoded H₂O₂ sensor showed that H₂O₂ at the wound margins peaks as early as a few minutes after injury, and that leukocytes are recruited to the wound site by a tissue-scale H₂O₂ gradient. Whether H₂O₂ is produced by damaged cells or by their neighbours, and how neutrophils sense H₂O₂ gradients yet remains to be answered.

Even very superficial traumas without the destruction of blood vessels and activation of platelets initiate wound healing. Injured parenchymal cells secrete prostaglandins, histamine, bradykinin and serotonin, which induce vasodilatation and increase capillary permeability. Subsequently, diapedesis of cells is accelerated and oxygen supply to the wound site is
increased. Clinical correlates of these processes are erythema and oedema, which become apparent at the wound edges during the inflammation phase. The infiltration of leucocytes, monocytes, and — 24–48 h later — macrophages is the key event in initial wound healing; their functions, such as degradation of cell detritus, counteraction of tissue infection and phagocytosis of microorganisms, are indispensable for wound healing. The amount and proportion of these inflammatory cells as well as the duration of the inflammatory phase depend on the wound extent, the degree of tissue infection, and the extent of debris that needs to be removed.1 Metabolically, inflammatory cells are extremely active and therefore depend on high amounts of oxygen. The high consumption of oxygen may lead to areas of hypoxia, even in well-oxygenated wounds.5 During the inflammatory phase, one central product of neutrophils, macrophages, monocytes, endothelial cells and fibroblasts is ROS. Thrombin, PDGF and TNF stimulate the release of ROS from endothelial cells, whereas interleukin (IL)-1 and platelet-activating factor stimulate ROS release from fibroblasts.22 ROS are the main force against microorganisms and thus wound infection. As mentioned above, NADPH-linked oxidase is responsible for the production of ROS, a highly oxygen-dependent process: the K_m (half maximal velocity) for NADPH-linked oxidase with oxygen as a substrate is a pO_2 value of 40–80 mmHg.8,23 Neutrophils were shown in vitro to lose their bacterial killing capacity at a pO_2 level below 40 mmHg.24,25 This loss may explain the significant bacterial colonization apparent in hypoxic chronic wounds. Besides their role in the oxidative killing of bacteria, ROS are able to augment neutrophil chemotaxis.9,18 Activated inflammatory cells themselves produce cytokines and growth factors such as IGF, leucocyte growth factor, IL-1, IL-2, TNF, TGF-α, TGF-β, VEGF, PDGF and lactate.26 VEGF and PDGF are both potent chemoattractants and mitogens for fibroblasts and angiogenic growth factors; their release initiates the formation of granulation tissue and thus the proliferative phase at day 4–5 after wounding.

Proliferative phase

The proliferative phase lasts — depending on the extent of the wound — for a few weeks and comprises elementary processes such as neoangi vascularization, formation of granulation tissue and ECM, and re-epithelialization. Endothelial cells and fibroblasts simultaneously invade the initially built haemostatic clot. Macrophages lead the way by degrading the clot and by releasing cytokines and chemokines that attract fibroblasts and stimulate angiogenesis.27 Particularly macrophages and their metabolites play a pivotal role in granulation tissue formation as depletion of macrophages was shown to lead to impaired wound healing in an in vivo porcine model.27 Fibroblasts and keratinocytes also secrete growth factors. Hereby, the cytokines of the TGF-β superfamily seem to play the most prominent role in granulation tissue formation.18 Interestingly, ECM molecules such as fibrinogen, fibronectin, fibrin and vitronectin are interactive with cytokines and also regulate the proliferative, differentiation and migration of fibroblasts.29 Important stimulators of angiogenesis are hypoxia and ROS. Both stimulate macrophages, fibroblasts, endothelial cells and keratinocytes to synthesize VEGF.30–32 Again, acute hypoxia is the initiator of this process, whereas chronic hypoxia impairs neovascularization.30,33 Hypoxia activates the transcription factor hypoxia-inducible factor (HIF)-1$.\alpha$. HIF-1$.\alpha$ binds to the hypoxia response element in the gene promoter region of the VEGF gene, which in turn upregulates VEGF. VEGF, as the major angiogenic growth factor, stimulates endothelial cells to migrate, proliferate and form countless new capillaries.32 Rossiter et al.34 showed in a murine model system that keratinoocyte-specific deletion of VEGF resulted in delayed wound healing due to impaired neoangiogenesis. Complementarily, Hong et al.35 showed enhanced wound healing in transgenic mice with overexpression of VEGF in the skin. The new capillaries branch out and invade the provisional wound matrix, which is replaced piecemeal by a new ECM produced and deposited by fibroblasts. The emerging ECM, in which fibroblasts, myofibroblasts, leucocytes and macrophages are embedded, consists of immature collagen (type III), proteoglycans, glycosaminoglycans, fibrin, fibronectin and hyaluronic acid.36 In this context, the production and deposition of collagen represents a fundamental process as it reconstitutes skin alignment and integrity. The production and deposition of collagen is proportional to oxygen tension: fibroblasts need a pO_2 of 30–40 mmHg for collagen synthesis.37 A central oxygen-dependent step in the synthesis of collagen is the hydroxylation of proline and lysine residues. In addition, hydroxylase activity is critically dependent on cofactors such as iron and vitamin C. Lysyl hydroxylase and lysyl oxidase, both oxygen-dependent enzymes, catalyse collagen cross-linking, a step that aims at wound stability. Again, in hypoxia, acute hypoxic conditions must be distinguished from chronic hypoxia. Acute hypoxia may stimulate fibroblast proliferation, collagen synthesis and expression of TGF-β1, whereas chronic hypoxia decreases these processes as shown in vitro by Siddiqui et al. in human dermal fibroblasts. Angiogenesis and ECM synthesis are interdependent processes as new blood vessels need new ECM as a three-dimensional scaffold for their ingrowth while the cell metabolism of, for example, fibroblasts needs new blood vessels that deliver oxygen and other nutrients. The fact that the same cytokines stimulate each process interconnects these steps of wound healing. Parallel to the formation of granulation tissue, re-epithelialization is initiated.

Re-epithelialization aims at covering the wound surface by a layer of epithelium and is based on the differentiation, proliferation and migration of epidermal keratinocytes. The stress pathways activated by injury lead to the oxygen-dependent release of certain cytokines and chemokines (TNF, TGF-α, TGF-β1, KGF, EGF, PDGF and IGF) by parenchymal cells such as keratinocytes. These cytokines, foremost TNF, seem to stimulate epidermal cells at wound edges and hair follicles in an autocrine manner to restructure their cytoskeleton, a process that is oxygen dependent and starts within a few hours after injury.19,40 The cells retract their intracellular tonofilaments,
Oxygen in wound healing, S. Schreml et al.

Oxygen in wound healing, S. Schreml et al.

The tissue remodelling phase starts as early as a few days after injury and lasts up to 2 years thereafter. In the beginning, wound contraction contributes to wound closure. This process is enabled due to the differentiation of a subgroup of fibroblasts to contractile myofibroblasts triggered by oxygen and mediated by TGF-β1, TGF-β2 and PDGF. After the main steps of the proliferative phase are fulfilled, unknown stop signals induce a redifferentiation of fibroblasts, keratinocytes and endothelial cells so that the accelerated proliferation and migration normalizes. Gradually, the provisional collagen (type III) is replaced by the more stable collagen type I that is produced strictly oxygen dependently by fibroblasts and is deposited in a physiological alignment. Thus, the healing wound gains increased wound tensile strength. The collagen fibres contract so that the wound tissue shrinks. Prominent mediators of collagen anabolism and catabolism are MMPs, which are released oxygen dependently by macrophages, keratinocytes, endothelial cells and fibroblasts. Of great importance are the TIMPs, which contribute to a concerted maturation process that leads to a restitution ad integrum or a scar formation depending on the MMP/TIMP ratio and activity.

Chronic wound healing

Chronic wounds are defined as wounds that do not follow the well-defined stepwise process of physiological healing but are trapped in an uncoordinated and self-sustaining phase of inflammation (Fig. 1). This impairs the constitution of anatomical and functional integrity in a physiologically appropriate length of time. The aetiology of chronic wounds is diverse, but more than 80% are associated with venous insufficiency, high blood pressure or diabetes mellitus. Despite the different underlying aetiology, most chronic wounds show a similar behaviour and progress. This uniformity is due to consistent components of the multifactorial pathogenesis of most chronic wounds: local tissue hypoxia, bacterial colonization, repeated ischaemia-reperfusion injury and cellular as well as systemic changes of ageing (Fig. 2).

Common causes of local wound tissue hypoxia are pathologi- cal alterations of the vascular bed (arteriosclerosis, micro- or macroangiopathy, venous hypertension), periwound fibrosis and a subsequent local reduction of tissue perfusion, or oedema, which increases the distance between capillaries (Fig. 2). Local tissue hypoxia has been widely accepted to impair wound healing profoundly. Mathematical models showing the importance of oxygen for physiological wound healing and ischaemic wounds have recently been published. Sheffield measured a pO2 of 5–20 mmHg in chronic wound tissue as compared with 30–50 mmHg in control tissue. Ahn and Mustoe measured a wound healing deceleration of 80% in an ischaemic rabbit ear model evoked by a pO2 decrease from 40–45 mmHg to 28–30 mmHg. The initial implication of tissue hypoxia on the molecular level is the impairment of mitochondrial oxidative phosphorylation with a subsequently reduced ATP production. As a consequence, ATP-dependent membrane transport proteins such as Na⁺/K⁺-ATPase or Ca⁡²⁺-ATPase drop out, which leads to a loss of the transmembrane potential with subsequent cell swelling. Particularly intracellular accumulation of calcium ions activates a signal transduction pathway that ends up in cell membrane disruption, which results in a promotion of inflammatory cascades via various signal pathways. Proinflammatory cytokines and chemokines such as TNF and IL-1 are
released, which attracts and activates neutrophils and macrophages.65 In addition, hypoxia induces a pronounced expression of endothelial adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and the corresponding ligands leucocyte function-associated antigen-1 and very late antigen-4 that enhance the extravasation and invasion of neutrophils and macrophages into the wound site with a subsequent autocrine synthesis of proinflammatory cytokines such as IL-1\textalpha, IL-1\textbeta, IL-6 and TNF.66 Growth factors and cytokines are released in a self-perpetuating manner, macrophages are attracted, and tissue degrading enzymes, e.g. serine proteases (neutrophil-derived elastases, cathepsin) and MMPs, particularly MMP-8, are generated.67 Wound fluid of chronic wounds has been demonstrated to show elevated levels of MMPs released from neutrophils (MMP-8) and fibroblasts (MMP-1, MMP-2, MMP-3, MMP-9, MMP-13).68–70 In physiological wound healing, proteases are inhibited by \textalpha\textsubscript{1}-antiproteinase, SLPI, \textalpha\textsubscript{2}-macroglobulin and TIMPs, once all necrotic tissue and debris have been removed. In chronic wound healing, certain proteases (e.g. MMP-8 and MMP-9) exceed their inhibitors, leading to an excessive degradation of growth factors and ECM components such as collagen, fibronectin and vitronectin.71 The breakdown products further promote inflammatory reaction,72 changing the inflammation phase from a self-limiting to a self-sustaining process. Accordingly, the activity of neutrophils is long lasting in chronic wounds but is limited to the first 72 h in acute wound healing.73,74

Neutrophils and macrophages produce ROS like HO-, HO• and O2--. As mentioned above, ROS in low concentrations provide signalling and defence against microorganisms and thus play an important role in acute wound healing. A prerequisite for this process is a delicate balance between the amount of oxidants and antioxidants, as high amounts of ROS impair wound healing due to oxidative damage. High amounts of ROS not only damage extracellular structure proteins, lipids and DNA, but also stimulate complex signal transduction pathways, leading to an enhanced expression of MMPs, serine proteases and inflammatory cytokines. The toxic effects of high amounts of ROS were shown by the severe endothelial damage in wounds of mice which lack the ROS-detoxifying enzyme peroxiredoxin-6.75 The most effective antioxidant is nitric oxide (NO) that is produced by NO synthase in a strictly oxygen-dependent manner.8 NO not only detoxifies ROS but also switches off nuclear factor-\textkB, an important transcriptional activator of inflammatory proteins.76 Lymphocytes that invade wound tissue also activate the oxygen-dependent oxidoreductase thioredoxin as a protective mechanism against oxidative stress.77 Under oxidative stress, macrophages express the oxygen-dependent haem oxygenase and cysteine transporter to protect themselves against ROS.78 Thus, nearly all detoxification mechanisms are strictly oxygen dependent. Under hypoxic conditions, as prevalent in chronic wounds, the detoxification process is hindered, leading to a persistent and uncontrolled production of ROS and to a further potentiation of the inflammatory state. The resulting perpetual degradation of wound tissue impairs the maturation of wounds. However, hypoxia promotes wound healing not only by means of enhancing the inflammatory state but also through the impairment of countless other metabolic processes on the molecular, cellular and supracellular level. Siddiqui et al.18 demonstrated in vitro that the collagen synthesis rate of human fibroblasts is decelerated under chronic hypoxia. \textalpha\textsubscript{1}-procollagen was significantly downregulated at the mRNA and at the protein level. Accordingly, Hunt et al.79 showed in vivo that fibroblasts were actively proliferating only in wound tissue with a pO\textsubscript{2} level of at least 15 mmHg. Jonsson et al.80 demonstrated this causality in a clinical investigation, in which the amount of deposited collagen was proportional to the pO\textsubscript{2} value present in the respective wound. In another ischaemic rabbit ear model, Wu et al.81 demonstrated significantly
impaired epithelial ingrowth and granulation tissue deposition under ischaemia.

Bacterial colonization, obligatory in all chronic wounds,82 attracts leucocytes, which results in high levels of proinflammatory cytokines and proteases and therefore directly initiates and maintains the inflammatory cascade. Different authors investigated wound fluids from acute and chronic wounds and showed an increased level of proinflammatory cytokines and proteases as well as a decreased level of growth factors in chronic wounds.83,84 Correspondingly, in healing wounds, a reduction in bacterial counts and markers of inflammation was reported.85,86 A direct correlation between bacterial colonization and the hypoxic state of the wound was shown in numerous studies. Knighton \textit{et al.}87,88 compared the wound extent after subcutaneous inoculation of bacteria in hypoxic wounds with wounds in animals treated with oxygen and found an inversely proportional correlation between the wound extent and the wound oxygenation status. Grief \textit{et al.}89 performed a prospective study on 500 patients with colorectal resection. They compared the wound infection rates in two patient groups who had received 80\% vs. 30\% oxygen perioperatively and 2 h postoperatively. Wound infection rates were 5.2\% (80\% oxygen) and 11.2\% (30\% oxygen), respectively. Other studies showed that even a moderate decrease of the tissue oxygen level significantly increases the risk of infection.90,91 Correspondingly, in an in vitro experiment, neutrophils were shown to lose their bacterial killing capacity at a pO\(_2\) level below 40 mmHg.24,25

In the past years, different authors postulated ischaemia-reperfusion injury as an important aetiological factor of chronic wounds.58,92,93 Patients with impaired circulation due to venous insufficiency, arteriosclerosis, diabetes mellitus etc. suffer cyclic intervals of ischaemia and reperfusion in their lower legs when changing posture (leg elevation or leg dependency). As the leg position is changed repetitively, injury occurs in a self-potentiating cycle.58,92 Ischaemia in combination with subsequent hypoxia induces a proinflammatory state (see above). With reperfusion, oedema is increased. Moreover, additional neutrophils flood into the wound tissue and transmigrate to the activated endothelium, which further contributes to the inflammatory vicious circle leading to cell death and tissue damage.94 Besides, reperfusion accounts for partial reoxygenation with a subsequently enhanced production of ROS. In turn, ROS have a deleterious effect on vascular and cellular processes.95 The impact of repetitive ischaemia-reperfusion injury on wound healing was demonstrated in animal models in which the tissue damage correlated with the number of ischaemia-reperfusion cycles.91,96 Remarkably, repeated ischaemia-reperfusion cycles seem to be more deleterious for wound healing than prolonged phases of single ischaemia.91,96

The fact that ageing cells show reduced cell viability and proliferative capacity, altered patterns of gene expression and decreased response to growth factors is of great importance for our understanding of abnormal healing, as most chronic wounds occur in the elderly (average age over 60 years).58,92,97,98 Senescent fibroblasts showed an increased generation of MMPs and a decreased release of MMP inhibitors,99 which could explain the well-documented fact that MMP inhibitor (TIMP-1) and serine protease inhibitor (\(x_1\)-antiproteinase, antileucoproteinase SLPI, \(x_1\)-macroglobulin) activity is reduced in chronic wound fluids. The healing response in an aged organism is basically and essentially delayed7 and additional pathogenetic factors such as local tissue hypoxia soon overpower response. Here, tissue hypoxia as a mainstay of chronic wound pathogenesis plays a crucial role because aged cells are significantly more susceptible to hypoxia than young adult cells. In an ischaemic rabbit ear model, aged human fibroblasts showed decreased migration under stimulation with TGF-\(\beta\), depression of PDGF receptor \(\beta\), and decreased TGF-\(\beta_1\) mRNA expression compared with young controls.91,100,101 Under hypoxic conditions, aged human keratinocytes showed a decreased motility101 and a decreased proliferation rate102 in vitro compared with younger cells. Tandara \textit{et al.}103 demonstrated increased cell death of aged human fibroblasts compared with young adult cells if exposed to oxidant stress plus ischaemia, conditions that are analogous to chronic wounds.

Interestingly, cells of chronic wounds show signs of senescence even independently of a patient’s age. Compared with fibroblasts taken from the healthy leg, fibroblasts harvested from the margin and bed of chronic wounds exhibited characteristics of premature senescence.97,104 Agren \textit{et al.}105 showed in an in vitro setting a significantly decreased proliferative activity of fibroblasts of chronic wounds in comparison with fibroblasts isolated from acute wounds. These observations might be partially explained by the exposure of cells in chronic wounds to stress factors such as chronic inflammation and the respective proinflammatory cytokines (TNF, TGF-\(\beta\)), the presence of ROS,106 and the aggressive proteolytic milieu caused by bacterial infection and toxins – factors that may accelerate cell senescence.97 An additional explanation might be that fibroblasts are driven through countless cell divisions to induce wound healing. Due to ongoing stimulation, cells seem to lose their proliferative capacity. This causality could explain the success of wound debridement as this procedure removes senescent cells from the ulcer surface. These data demonstrate that stress factors apparent in chronic wounds, specifically hypoxia, and the resulting premature senescence create a vicious circle that is difficult to break, particularly in elderly patients.

From the clinical point of view, the main surface area of a common nonhealing wound shows extensive fibrin deposition and necrosis due to the prevalent inflammatory state. However, a typical hallmark of chronic wounds is the persistent occurrence of islands of granulation tissue or epithelialization within the inflammatory battlefield. Hunt \textit{et al.}79 showed that wound areas with actively proliferating fibroblasts were seen only at pO\(_2\) above 15 mmHg. Only rarely are these islands the origin of a structured healing process as, in most cases, they are overwhelmed by inflammation. The conditions in chronic wounds are changing repeatedly, not only temporally but also spatially. Thus, a chronic wound represents an extremely heterogeneous structure.
THERAPEUTIC WOUND OXYGENATION

The ability of systemic oxygen therapy as well as topical oxygen therapy (TOT) to improve wound healing and prevent infection is documented in animal models and clinical trials. Hyperbaric oxygen therapy (HBOT) delivers 100% O2 at 2–3 atmospheres of pressure over 60–120 min 5 days a week in a specialized patient chamber. Usually, 10–30 treatments are performed. HBOT has turned out to be an effective tool to increase pO2 values in wound tissue, and the effects of HBOT on chronic wound healing have been described by a mathematical model. Sheikhi et al. demonstrated increased VEGF expression in rats treated with HBOT, and Hopf et al. showed a stimulation of neovascularization in ischaemic tissue after HBOT. Moreover, oxygen administration has been shown to increase VEGF mRNA levels in endothelial cells and macrophages and VEGF protein expression in wound fluids in vivo. Knighton et al. reported accelerated vessel growth following supplemental oxygen administration. The transcutaneous pO2 in wound-surrounding tissue measured during HBOT correlated directly with the improvement in wound healing of chronic wounds. In a randomized controlled trial in diabetic patients (n = 68) with ulcers of the lower legs, Faglia et al. ascertained that treatment with HBOT and standard care vs. standard care alone resulted in a significant lower amputation rate in the HBOT group. Kranke et al. assessed the benefits and harms of HBOT for treating chronic ulcers of the lower legs and found that HBOT both significantly reduced the risk of major amputation and improved the chance of healing. Abidia et al. evaluated the role of HBOT in the management of ischaemic lower-extremity ulcers. Patients were given 30 treatments of 100% oxygen vs. air. Healing was achieved in five of eight ulcers in the treatment group compared with one of eight ulcers in the control group. Despite the expense of HBOT, the authors stated reduced total treatment costs for every patient during the study. Another controlled study demonstrated that HBOT did not reduce hospital days of wound patients but the amount of bacterial colonization. Bonomo et al. showed that HBOT stimulates the release and activity of growth factors and their receptors. Zhao et al. measured the amount of epithelial regrowth and granulation tissue production following HBOT alone and in combination with PDGF or TGF-β1 in an ischaemic rabbit ear ulcer model. They demonstrated that HBOT alone increased the production of new granulation tissue. However, the addition of growth factors to HBOT synergistically led to increased healing rates. This supports the clinical experience that, in the majority of cases, the different treatment strategies for chronic wounds are successful only if combined. In vitro experiments of Roy et al. demonstrated that oxygen triggers the differentiation of fibroblasts to myofibroblasts – a possible explanation for the accelerated healing. It has also been shown in vitro that HBOT may increase the susceptibility of certain bacteria to antimicrobial agents. For example, Kenward et al. reported that under HBOT the zones of inhibition were reduced in Gram-negative bacterial cultures, whereas for Gram-positive bacteria a mixture of effects was found. It seems that these effects are quite strain specific and may not easily be generalized to all aerobic or anaerobic bacteria. Grief et al. reported significantly fewer postoperative infections in patients who had received 80% oxygen compared with patients who had received 30% oxygen during surgery and 2 h afterwards. However, costs of therapy, the risk of systemic oxygen toxicity, and the lack of large evidence-based studies with standardized treatment protocols impede the general acceptance of oxygen therapy as a standard treatment option in wound care.

TOT is characterized by the administration of pure oxygen to the wound area using a portable inflatable device. A major advantage of TOT is its independence of the wound’s microcirculation. Other advantages are lower costs, the lower risk of oxygen toxicity, and the possibility of home treatment. Fries et al. studied the efficacy of TOT in excisional dermal wounds in pigs. They showed that exposure of open dermal wounds to TOT increases wound tissue pO2 and, if repeatedly applied, accelerates wound closure. Kalliainen et al. conducted a retrospective uncontrolled study on 58 wounds in 32 patients given TOT. They documented a complete healing of 38 wounds in 15 patients during TOT and concluded that TOT had no detrimental effects on wounds and showed beneficial indications in promoting wound healing. However, the data currently available have a restricted informative value because of small sample sizes, the inclusion of different wound types and patient ages, additionally applied wound care regimens, nonstandardized treatment protocols, or a poor evaluation of comorbidities. Therefore, additional evidence-based studies with standardized treatment protocols are required to evaluate the efficacy of oxygen therapy.

OXYGEN MONITORING IN WOUNDS

Different methods allow the evaluation of wound tissue oxygenation. Direct and indirect as well as invasive and noninvasive methods must be distinguished, whereas the noninvasive methods are preferable in routine clinical settings. Indirect methods estimate tissue oxygenation only by calculating the relation of oxygenated to nonoxygenated haemoglobin. This calculation is possible as haemoglobin changes its spectroscopic as well as its magnetic properties with its degree of oxygenation. Respective methods (for instance, near-infrared spectroscopy, tissue reflectance photometry, magnetic resonance chemistry, magnetic resonance saturation, blood oxygen-dependent magnetic resonance imaging) are rather imprecise: first, they do not allow the measurement of absolute values; second, the exact penetration depth of light is unknown; and third, they are falsified by certain disturbance variables such as other tissue chromophores or global perfusion (for further details see reviews). Direct methods allow direct measurements of oxygen or pO2 values. Tissue oxygen-dependent magnetic resonance imaging is based on the paramagnetic properties of oxygen in tissue. However, this technique is not applicable at the skin surface as the skin–air interface evokes a severe artifact. The polarographic electrode technique allows the measurement of pO2 and is still

© 2010 The Authors
Journal Compilation © 2010 British Association of Dermatologists • British Journal of Dermatology 2010
Oxygen in wound healing, S. Schreml et al.

the gold standard for assessing tissue oxygenation. This technique is usually applied using a planar electrode for surface measurements or a needle electrode for measurements within the tissue. An alternative application method for measurements in wound tissue is to place the polarographic electrode directly into subcutaneous tissue. However, placing an electrode into tissue (i) is invasive and painful, (ii) causes tissue injury that alters microcirculation and thus pO2 levels, and (iii) may lead to irritation at the electrode membrane. A further fundamental limitation of the polarographic technique is the oxygen consumption during measurement, which makes long-term measurements impossible and overestimates pO2 values as the electrode "sucks" oxygen through the tissue. Besides, this technique provides only scattered single measurements, making multiple measurements necessary. The required calibration before and after each measurement and the lacking spatial resolution further limit the application of the polarographic electrode technique. Therefore, the available methods suffer from disadvantages when measuring pO2 levels in tissue. Because of these disadvantages, only a few studies exist on tissue oxygenation in acute wounds and hardly any study on tissue oxygenation in chronic wounds.

The use of luminescence lifetime imaging (LLI) overcomes these limitations. This method for two-dimensional pO2 measurements is based on the oxygen-dependent quenching of phosphorescence of the indicator platinum(II)-octaethylporphyrin. Hereby, the indicator is immobilized in a polystyrene matrix as a transparent planar sensor. This method was validated in vitro and in vivo, as well as in clinical settings. This body of work has characterized this method as particularly suitable for surface measurements. First, sensors are transparent, allowing a simultaneous visualization of the underlying wound tissue. Second, sensor sensitivity remains stable during measurement because alterations due to ageing, moisture, toxic cell products, local enzymes or photo-bleaching as a result of exposure to light could be excluded in calibration sequences over 8 days both in vivo and in vitro.

Third, pO2 levels can be visualized in two dimensions with a high resolution (approximately 25 μm) over large areas, thus allowing the simultaneous visualization of pO2 gradients in different skin conditions. This fact is of fundamental relevance in heterogeneously oxygenated tissues such as chronic wounds as the heterogeneity can be registered simultaneously in a single measurement. Single point measurements as provided by the Clark electrode are unable to provide oxygen gradients. Fourth, in vitro experiments documented a high sensitivity over a broad pO2 range (±0.2 mmHg at 0 mmHg; ±1.5 mmHg at 160 mmHg pO2). The Clark electrode provides a sensitivity of at least ±10%. Fifth, in clinical investigations, accurate and reproducible pO2 values were provided under changing microcirculatory conditions. The lack of oxygen consumption during measurement allowed both a more realistic estimation of pO2 values compared with the gold standard and the permanent use in regions with critical oxygen supply. Sixth, this noninvasive and rapid technique is simple to perform and prevents patient discomfort. Zhang et al. recently published a dual-emissive material for luminescence imaging of pO2 in tumours, which may also be modified for use in two-dimensional wound oximetry.

Because of the great interest in new technologies that advance research on the role of oxygen in wound healing, Hopf and Rolls listed attributes of an ideal wound oximeter: noninvasive; repeatable; simple to use; stable for at least 24 h in vivo; not disturbed by motion, pH and CO2; provides accurate, precise and easily interpretable results in the range from 0 to ≥300 mmHg. Furthermore, such an oximeter should enable continuous long-term measurements, require just a single point calibration at room conditions in vivo, and simultaneously measure oxygen and temperature at the same site. All these requirements are fulfilled by LLI.

Conclusions

Oxygen is well known to be required for wound healing. The K for enzymes involved in bacterial killing, collagen synthesis, angiogenesis and epithelialization requires pO2 levels in wound tissue ranging from 25 to 100 mmHg. Therefore, restricted oxygenation, as common in chronic wounds, impairs the healing process. Several studies have demonstrated that enhancing wound tissue oxygenation improves wound healing and reduces bacterial colonization. Further research should establish LLI as a new, promising tool for wound oximetry. This will probably enhance our understanding of the pathophysiology of chronic wound healing and of oxygen delivery and metabolism in the different healing zones of chronic wounds. Of special interest is monitoring the wound oxygenation under different therapeutic regimens to enable the well-founded selection of a suitable and efficient therapeutic modality for the individual patient. This will contribute to cost-effectiveness and hopefully will improve the quality of life of the affected patients.

What’s already known about this topic?

- Oxygen is a prerequisite for wound healing due to the increased demand for reparative processes such as cell proliferation, bacterial defence, angiogenesis and collagen synthesis.
- Wound healing is impaired under hypoxia and topical oxygen therapy is known to affect healing.

What does this study add?

- We present an up-to-date overview on the role of oxygen in wound healing and chronic wound pathogenesis, a brief insight into the impact of systemic and topical oxygen treatment, and a discussion of the role of wound tissue oximetry.
Acknowledgments

The excellent editorial assistance of Ms Monika Scholl is gratefully acknowledged. This work was supported by grants of the German Research Foundation (Deutsche Forschungsgemeinschaft, BA 3410/3-1) and the Novartis Foundation (S.S., Novartis Postgraduate Scholarship).

References

28 Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83:835–70.
Oxygen in wound healing, S. Schreml et al.

Oxygen in wound healing, S. Schreml et al.

